A QUICK, EASY YET COMPREHENSIVE GPG TUTORIAL

Posted on July 28, 2022 by Marco Antonio Carcano

GnuPG is a freely available command line encryption suite based on OpenPGP encryption library, and
it is probably the most used encryption suite in the world. Every IT professional sooner or later face
use cases that require to know how to handle it, but the point is that, despite a trivial usage of this
suite may look quite easy, there are some not so obvious nuances that if known can really improve
the experience, also saving from making some hidden mistakes that can really painful if anything
would go wrong.

This is a quick, easy yet comprehensive GPG tutorial with the aim to provide a quick yet thorough

explanation of how to safely use this amazing encryption suite.

1. PGP, GnuPG, Open PGP
1.1. PGP - Pretty Good Privacy
1.2.Open PGP
1.3.GPG - Gnu PG
2.The Lab Environment
2.1.Install And Configure The Vim Plugin
2.2.Create The Users
2.3. Configure User-Specific GPG Settings
3. Getting Acquainted To GPG
4. Generating the key-pair(s)
4.1. Key Types And Capabilities
4.2. Generating the Primary Key Pair
4.2.1. While connected using SSH
4.2.2. While Switching User With Sudo
4.2.3. Elliptic Curve Keys

4.3. Generating the Encryption subkey

4.4, Generating the Signing subkey

4.5. Generating the Authentication subkey
5. Generating The Revocation Certificate
6. Operating Secret Keys

6.1. Listing The Available Keys

6.2. Adding Additional Uid To A Primary Key

6.3. Selecting A Specific Uid

6.4. Deleting A Specific Uid

6.5. Selecting SubKeys

6.6. Extending The Expiration Of A SubKey

6.7. Deleting A SubKey
6.8. Exporting The Secret Keys
6.8.1. Exporting A Specific Secret Key Along With Every SubKey
6.8.2. Exporting only SubKeys Of A Specific Key
6.9. Securely Working With The Primary Key
6.9.1. Store The Primary Key And The Revocation Certificate Offline
6.9.2. Importing The Primary Key
6.9.3. Generating A New Primary Key
7. Operating Public Keys
7.1. Exporting The Public Key(s)
7.2.Importing The Public Key(s)
7.3. Listing The Available Keys
7.3.1. Showing Fingerprints And Key-ID
7.4. Deleting A Public Key
7.5. Delivering The Public Key To GPG KeyServers
7.6. Fetching Public Keys From GPG Keyservers
8. The Web Of Trust
8.1. Trusting Someone Else's Key
8.2.5igning A Key
8.3. Listing Signatures on a Key
8.4. Automatic Assignment Of Trust Level
9. Operating With GPG
9.1.Signing documents
9.1.1. GPG Signing
9.1.2. Cleartext Siging
9.1.3. Detached Signature
9.2.Signing Software
9.2.1. Verifying A Detached Signature
9.2.2. Generating A Detached Signature
9.2.3. GPG Signed RPM Packages
9.3. Encrypting and decrypting
9.3.1. Exploiting The Vim GPG plugin
9.3.2. Hidden Recipients
9.4.Signing And Encrypting A document
10. Footnotes

PGP, GNUPG, OPEN PGP

These are tightly bound terms that quite often people mislead: this is certainly because of the lots of
changes that happened during the long story of the evolution of PGP.

PGP - PRETTY GOOD PRIVACY

PGP (Pretty Good Privacy) is an encryption software developed by Phil Zimmermann that uses a serial
combination of hashing, data compression, symmetric-key cryptography and of course public-key

cryptography.

The world should say a very big thanks to Phil Zimmermann: he is a true philanthropist! He
was a long-time anti-nuclear activist, and created PGP encryption to let people exchange
confidential messages without having to fear eavesdropping. No license fee was required
for its non-commercial use, and the complete source code was included with all copies. He
was so keen into freedom of communication to become a target of a criminal investigation
by the US Government for "munitions export without a license" in 1993 - at the time within
the definition of the US export regulations cryptosystems with keys of more than 40 bits in
length were considered munitions: lucky the investigation was closed without filing
criminal charges against him or anyone else. He challenged publishing the entire source
code of PGP in a hardback book which was broadly distributed and sold.

OPEN PGP

In 1997 Zimmermann became convinced that an open standard for PGP encryption was critical for
them and for the cryptographic community as a whole: PGP Inc. proposed to the IETF a new
standard granting them permission to use the name OpenPGP to describe it as well as any program
that supported the standard. The OpenPGP standard (RFC-4880), managed by the OpenPGP Working
Group, is aimed at defining a mail encryption standard.

GPG - GNU PG

GnuPG (GPG) is the free implementation of the PG encryption develped by Werner Koch in 1999. It
probably is the most used suite that implements PG.

THE LAB ENVIRONMENT

The most straightforward way to learn GPG is seeing it in action, seeing the interactions between at
least five users; for this reason we are going to setup a small lab with the following users:

e foo
® bar
* baz
* qux
e fred

We will use them to learn how to generate the keys and to trust someone else's keys as well as
exchange GPG-encrypted or signed data.

INSTALL AND CONFIGURE THE VIM PLUGIN

For the ancient ones (like me) who love the old fashioned Vim, there's a GPG plugin that lets users
seamlessly edit encrypted files within vim.

Since vim is broadly used, it seems wise to deliver this plugin along with some reasonable defaults to
every newly created user; it is enough adding it to the /etc/skel directory as follows:

sudo mkdir -p /etc/skel/.vim/pack/bundle/start
sudo dnf install -y git
sudo git clone https://github.com/jamessan/vim-gnupg.git /etc/skel/.vim/pack/bundle/

4

We also add the /etc/skel/.vimrc configuration file and set up as to to have Vim create armored files
(ASClI files, so that they are easy to cut-and-paste or to send by email).

" Armor files
let g:GPGPreferArmor=1

Finally, let's configure the gpg-agent related variables, or the plugin can get mixed-up about what
values to use:

sudo bash -c "cat >> /etc/profile.d/gpg.sh" << "EOF"

GPG_TTY="tty
export GPG_TTY
EOF

CREATE THE USERS

Let's create the users necessary for this lab as follows:

sudo adduser foo
sudo adduser bar
sudo adduser baz
sudo adduser qux
sudo adduser fred

then we set a password to each of them.

foo user:

sudo passwd foo

bar user:

sudo passwd bar
baz user:

sudo passwd baz
qux user:

sudo passwd qux

and of course fred:

sudo passwd fred

The aim of this lab is mock-up real-life: in a real-life scenario most of the times the system engineer
connects to a remote host using SSH and once connected type the GPG commands - or switches to
other users using sudo before typing them. For this reason I'm either showing some commands after
switching the user with sudo, or submitting them using SSH.

Since the actual behavior is the same, to keep our lab conveniently small, instead of connecting to a
remote system we SSH connect to the localhost with these users .

Let's SSH connect as any of the above users:
ssh foo@localhost whoami

Of course the first time we have to set as trusted the fingerprint the host key of the localhost:

The authenticity of host 'localhost (::1)' can't be established.
ECDSA key fingerprint is SHA256:uTJ2N1prMvpiMbtCIW1Z@vBWacam13gkvHQOPcqpH7c.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

simply type "yes".

CONFIGURE USER-SPECIFIC GPG SETTINGS

Obviously each user can customize GPG as by his own needs - for example, to customize it for the
"foo" user:

sudo su - foo
create the ~/.gnupg directory:
mkdir -m 700 ~/.gnupg

GnuPG reads its configuration from the ~/.gnupg/gpg.conf file - create it with the following contents:

no-greeting

require-cross-certification
default-recipient-self

keyid-format long
with-fingerprint

personal-digest-preferences SHA512

cert-digest-algo SHA512

default-preference-1list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CASTS5 ZLIB BZIP2 ZI
P Uncompressed

fixed-1ist-mode

no-emit-version
#no-comments

verify-options show-uid-validity
list-options show-uid-validity

keyserver hkps://keys.openpgp.org
keyserver-options no-honor-keyserver-url
keyserver-options include-revoked
keyserver-options auto-key-retrieve

this sample file contains some options to avoid some information leakage and to prefer strong
algorithms.

A About KeyServers, mind there is a notice dated 2021-06-21 on sks-keyservers.net stating
"Due to even more GDPR takedown requests, the DNS records for the pool will no longer
be provided at all".

When done with editing this file, disconnect the "foo" user:

exit

GETTING ACQUAINTED TO GPG

This post focuses on GnuPG 2.1.18 or later - this means that if you are using Red Hat or CentOS 8 or
Rocky Linux 8 the GPG suite is already installed with the right version.

Let's verify the installed version on your system:

gpg --version

the output on my system is:

gpg (GnuPG) 2.2.20
libgcrypt 1.8.5
Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Home: /home/vagrant/.gnupg

Supported algorithms:

Pubkey: RSA, ELG, DSA, ECDH, ECDSA, EDDSA

Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,
CAMELLIA128, CAMELLIA192, CAMELLIA256

Hash: SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2

as you can see, ECDH is listed among the Pubkey: this means that this version does support Elliptic
Curves keys. In order to choose which one to use, we can list the supported ECC curves as follows:

gpg --with-colons --list-config curve

the output on my system is:

cfg:curve:cv25519;ed25519;nistp256;nistp384;nistp521;secp256kl

A Although it is not strictly necessary for going on with this post, having a good
understanding of cryptography helps in understanding the rest of it. | suggest you read

Cryptography Quick Guide - Understand Symmetric And Asymmetric Cryptography And
How To Use It With Openssl.

GENERATING THE KEY-PAIR(S)

GPG relies both on symmetric and asymmetric cryptography: more precisely it uses

* public keys to encrypt files and verify digital signatures
* private keys to digitally sign files or decrypt files

The best practice in a real-life scenario is to have a Primary private key used to generate subkeys
either for encrypt, sign or authentication specific purposes, but you can just have a single key to do
everything as a whole, although this is not recommended.

So the very first thing to do is generate your own keys.

KEY TYPES AND CAPABILITIES

GPG Keys are called:

* Keys (The Primary Keys): this kind of key has Certification and Signing capabilities
o secidentifies the secret key
© pub identifies the public key
* Subkeys (Keys bound to the Primary Key)
o ssb identifies the secret key
o sub identifies the public key

https://grimoire.carcano.ch/blog/cryptography-quick-guide/
https://grimoire.carcano.ch/blog/cryptography-quick-guide/

Mind that keys can have one or more of the following capabilities:

Capability |Description | Key |Subkey

c Certification - it is used to certify the identities - subkey cannot X
have this capability

S Signing other keys or data X X

Encrypting data X

Authentication (it requires Signing and Encrypting
capability).Example use cases are:

SSH as bare ssh-rsa keys (monkeysphere subkey-to-ssh-agent or
A HSM) X
SSH as pgp-sign-rsa certificates

TLS according to RFC 5081 (supported by GnuTLS)
| guess there are other software that can use it

GENERATING THE PRIMARY KEY PAIR

The GPG environment of a user gets initialized as soon as he generates (or imports) its first private

key.

My personal advice is to use both the --expert and --full-gen-key command line options since they
enable all the features.

Just to show you - don't type it:
gpg --expert --full-gen-key

the outcome is:

Please select what kind of key you want:
(1) RSA and RSA (default)

(2) DSA and Elgamal

(3) DSA (sign only)

(4) RSA (sign only)

(7) DSA (set your own capabilities)
(8) RSA (set your own capabilities)
(9) ECC and ECC

(10) ECC (sign only)

(11) ECC (set your own capabilities)
(13) Existing key

(14) Existing key from card

Your selection?

As you see, thanks to the previous command line switches, we can choose among 14 different
options; some of them have the key type twice - for example "RSA and RSA": these options are used
to create both the Primary Key and a subkey within a single task. The default choice is "(7) RSA and
RSA".

WHILE CONNECTED USING SSH

Lets generate "bar" user's Primary Key simulating the use case of an SSH connected user:

ssh -t bar@localhost "gpg --quick-gen-key 'Bar User (Bar User Primary Key) <bar@carc

4

A Mind that we have to set a TTY (-t option) when SSH connecting, or we will have problems
with the pinentry when typing the password of the key.

as you see, it is as:

* we picked up the option "(8) RSA (set your own capabilities)'
* set the sign and cert capabilities

* set the key to never expire

Right after typing the password to SSH connect as foo user, gnupg asks for the password to be used
protect the key we are about to generate:

| Please enter the passphrase to
| protect your new key

Passphrase:

|

|

|

| <OK> <Cancel>
L

choose a good password and wait until the generation of the key succeeds.

The last part of the output is as follows:

Note that this key cannot be used for encryption. You may want to use
the command "--edit-key" to generate a subkey for this purpose.

pub rsa2e048 2022-07-21 [SC]

1414EDCC5BBBC87956624F381A44B621829F5714

uid Bar User (Bar User Primary Key) <bar@carcano.local>

In real life we would SSH login for true and then type the command to generate the Primary Key, ...
but here to go a little bit faster instead of logging in we directly executed the GPG statement to
generate the keys.

As by the note in the previous snippet, this key cannot be used for encryption: to say you all, the key-
pair generated (we can call it primary-key) is used only for identifying the owner, ... we'll get on this
very soon.

The best practice with GPG is avoiding to operate using the Primary Keys: just create subkeys for
encryption and for digital signature, then save the Primary Key and its revocation certificate off-line,
and store them in a very secure place.

I'm pretty sure you're asking why ever do you need subkeys. The answer is for your own
security: by doing so you can secure and store off-line the Primary Key pair: this spares you
from the risk of stealing of the keys or of the device (for example if you are using a laptop)

or from hardware failures. You only have to take absolute care of the store you use for
securing your Primary Key pair (it can be a USB stick, HSM or whatever you think is secure
enough for your use case). Mind that your own reputation is bound to whatever happens
to your Primary Key!

WHILE SWITCHING USER WITH SUDO

This is the time to show you how to deal with sudo, ... let's switch to the "baz" user:

sudo su - baz

we can now create the Primary Key as follows - note that this time we have to supply --pinentry-
mode loopback or we won't be granted the right to access the to enter the password, causing the
command to fail:

gpg --pinentry-mode loopback --quick-gen-key 'Baz User (Baz User Primary Key) <baz@c

4

as you see, we are generating a key with the same features of the one we have just created for the
"bar" user:

* "(8) RSA (set your own capabilities)'
* sign and cert capabilities
* key never expires

exit the sudoed shell to the previous user:
exit

ELLIPTIC CURVE KEYS

As for the foo user, ... we generate a key with the following features:

* ECC with nistp256 elliptic curve
* sign and cert capabilities
* key never expires

This time we do not switch user, we run the command "as the foo user" (-u foo):

sudo -u foo gpg --pinentry-mode loopback --quick-gen-key 'Foo User (Foo User Primary

4

@ Mind that ECC uses different keys for encryption (ECDH) and sign in (ECDSA or
EdDSA).

Let's generate the Primary Key for the "qux" user:

sudo -u qux gpg --pinentry-mode loopback --quick-gen-key 'Qux User (Qux User Primary

4

and for the "fred" user:

sudo -u fred gpg --pinentry-mode loopback --quick-gen-key 'Fred User (Fred User Prin

4

GENERATING THE ENCRYPTION SUBKEY

We are ready to create a subkey for encryption purposes - become the "foo" user:

sudo su - foo

now launch the interactive wizard to create the subkey as follows:

gpg --expert --edit-key foo@carcano.local addkey

here is a snippet of the interactive procedure:

Please select what kind of key you want:
(3) DSA (sign only)

(4) RSA (sign only)

(5) Elgamal (encrypt only)

(6) RSA (encrypt only)

(7) DSA (set your own capabilities)

(8) RSA (set your own capabilities)

(10) ECC (sign only)

(11) ECC (set your own capabilities)

(12) ECC (encrypt only)

(13) Existing key

(14) Existing key from card

Your selection? 12

Please select which elliptic curve you want:
(1) Curve 25519

(3) NIST P-256

(4) NIST P-384

(5) NIST P-521

(9) secp256k1l

Your selection? 3

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0) 1y

Key expires at Fri Jul 21 ©9:42:47 2023 UTC
Is this correct? (y/N) y

Really create? (y/N) y

as you see we created a key with the following features:

* "(12) ECC (encrypt only)"
¢ using elliptic curve NIST P-256 "(3) NIST P-256"

* valid for one year only (1y)

the last part of the output of the generation wizard lists the available keys, with the new one among
them (ssb nistp256/F43E205F0A259AC7)

sec nistp256/7B221C7A2ACA4DE9S

created: 2022-07-21 expires: never usage: SC

trust: ultimate validity: ultimate

ssb nistp256/F43E205FOA259AC7

created: 2022-07-21 expires: 2023-07-21 usage: E

[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

type "save" to store the new key into the keyring and exit from the GPG interactive command prompt
back to the shell:

gpg> save

Let's create an encryption subkey also for the "bar" user - just exit the sudoed shell we are currently
in and become the "bar" user:

exit
sudo su - bar

we can avoid to use the interactive procedure, but first we need the fingerprint of the Primary Key:

gpg --list-secret-keys --fingerprint

the output is as follows:

/home/bar/.gnupg/pubring. kbx

sec rsa2e48 2022-07-21 [SC]
1414 EDCC 5BBB (879 5662 4F38 1A44 B621 829F 5714
uid [ultimate] Bar User (Bar User Primary Key) <bar@carcano.local>"

the interactive procedure can be skipped by using the --quick-add-key option along with the answers
to the questions of the interactive wizard right at the end of the statement:

gpg --pinentry-mode loopback --quick-add-key '1414 EDCC 5BBB (€879 5662 4F38 1A44 B6Z
»
we generated a key with the following features:

* RSA
* encryption capability
* valid for one year only

exit the sudoed shell:

exit

GENERATING THE SIGNING SUBKEY

Same way we created an encryption subkey, we can create a signing subkey - become the "foo" user:

sudo su - foo

now launch the interactive wizard to create the subkey as follows:
gpg --expert --edit-key foo@carcano.local addkey

here is a snippet of the interactive procedure:

Please select what kind of key you want:
(3) DSA (sign only)

(4) RSA (sign only)

(5) Elgamal (encrypt only)

(6) RSA (encrypt only)

(7) DSA (set your own capabilities)

(8) RSA (set your own capabilities)

(10) ECC (sign only)

(11) ECC (set your own capabilities)

(12) ECC (encrypt only)

(13) Existing key

(14) Existing key from card

Your selection? 10

Please select which elliptic curve you want:
(1) Curve 25519

(3) NIST P-256

(4) NIST P-384

(5) NIST P-521

(9) secp256kl

Your selection? 3

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0) 1y

Key expires at Fri Jul 21 ©9:53:06 2023 UTC
Is this correct? (y/N) y

Really create? (y/N) y

as you see we created a key with the following features:

* "(10) ECC (sign only)"
* using elliptic curve NIST P-256 "(3) NIST P-256"
¢ valid for one year only (1y)

the last part of the output of the generation wizard lists the available keys, with the new one among

them (ssb nistp256/4401D4D107578972)

sec nistp256/7B221C7A2ACA4DES

created: 2022-07-21 expires: never usage: SC

trust: ultimate validity: ultimate

ssb nistp256/F43E205FOA259AC7

created: 2022-07-21 expires: 2023-07-21 usage: E

ssb nistp256/4401D4D107578972

created: 2022-07-21 expires: 2023-07-21 usage: S

[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

type "save" to store the new key into the keyring and exit from the GPG interactive command prompt
back to the shell:

gpg> save

Let's create an signing subkey also for the "baz" user - just exit the sudoed shell we are currently in
and become the "baz" user:

exit
sudo su - baz

as we saw, we can avoid to use the interactive procedure, but first we need the fingerprint of the
Primary Key:

gpg --list-secret-keys --fingerprint

the output is as follows:

/home/baz/.gnupg/pubring.kbx

sec rsa2e48 2022-07-21 [SC|
42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611
uid [ultimate| Baz User (Baz User Primary Key) <baz@carcano.local>

the interactive procedure can be skipped by using the --quick-add-key option along with the answers
to the questions of the interactive wizard right at the end of the statement:

gpg --pinentry-mode loopback --quick-add-key '42C1 515B D21D 96B@ 6479 D914 7404 BFE
»
we generated a key with the following features:

* RSA
* sign capability
* valid for one year only

exit the sudoed shell:

exit

GENERATING THE AUTHENTICATION SUBKEY

Same way we created an encryption and a signing subkeys, we can create an authentication subkey -
become the "foo" user:

sudo su - foo

now launch the interactive wizard to create the subkey as follows:
gpg --expert --edit-key foo@carcano.local addkey

here is a snippet of the interactive procedure:

Please select what kind of key you want:
(3) DSA (sign only)
(4) RSA (sign only)
(5) Elgamal (encrypt only)
(6) RSA (encrypt only)
(7) DSA (set your own capabilities)
(8) RSA (set your own capabilities)
(10) ECC (sign only)
(11) ECC (set your own capabilities)
(12) ECC (encrypt only)
(13) Existing key
(14) Existing key from card
Your selection? 11

Possible actions for a ECDSA/EdDSA key: Sign Authenticate
Current allowed actions: Sign

(S) Toggle the sign capability
(A) Toggle the authenticate capability
(Q) Finished

Your selection? a

Possible actions for a ECDSA/EdDSA key: Sign Authenticate
Current allowed actions: Sign Authenticate

(S) Toggle the sign capability
(A) Toggle the authenticate capability
(Q) Finished

Your selection? q
Please select which elliptic curve you want:
(1) Curve 25519
(3) NIST P-256
(4) NIST P-384
(5) NIST P-521
(9) secp256k1l

Your selection? 3
Please specify how long the key should be valid.
0 = key does not expire

= key expires in n days
w = key expires in n weeks
m = key expires in n months
y = key expires in n years

Key is valid for? (0) 1y

Key expires at Fri Jul 21 10:03:00 2023 UTC
Is this correct? (y/N) y

Really create? (y/N) y

as you see we created a key with the following features:

® "(11) ECC (set your own capabilities)"

* added the "authenticate" capability "(A)"

¢ using elliptic curve NIST P-256 "(3) NIST P-256"
¢ valid for one year only (1y)

the last part of the output of the generation wizard lists the available keys, with the new one among
them (nistp256/F9C6C45EB9650672):

sec nistp256/7B221C7A2ACA4DE9S

created: 2022-07-21 expires: never usage: SC

trust: ultimate validity: ultimate

ssb nistp256/F43E205FOA259AC7

created: 2022-07-21 expires: 2023-07-21 usage: E

ssb nistp256/4401D4D107578972

created: 2022-07-21 expires: 2023-07-21 usage: S

ssb nistp256/F9C6CA5EB9650672

created: 2022-07-21 expires: 2023-07-21 usage: SA

[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

you can see, now foo user three private subkeys:

* nistp256/F43E205F0A259AC7 for encryption (usage: E)
* nistp256/4401D4D107578972 for signing (usage: S)
* nistp256/F9C6C45EB9650672 authentication (usage: SA)

type "save" to store the new key into the keyring and exit from the GPG interactive command prompt
back to the shell:

gpg> save

GENERATING THE REVOCATION CERTIFICATE

The aim of a revocation certificate is providing a way to invalidate the key if it gets stolen.Despite gpg
automatically generates the revocation certificate when generating the Primary Key (as by the best
practice), it is wise to know how to generate other revocation certificates if necessary:

If you are not working as the "foo" user, switch to it using sudo:

sudo su - foo

now generate the revocation certificate as follows:

gpg --gen-revoke --armor --output=foo@carcano.local.revocation.asc foo@carcano.local

4

the output is:

sec nistp256/7B221C7A2ACA4DE9 2022-07-21 Foo User (Foo User Primary Key) <foo@carcano.lo
cal>

Create a revocation certificate for this key? (y/N) y
Please select the reason for the revocation:
@ = No reason specified
Key has been compromised
2 = Key is superseded
3 = Key is no longer used
Q = Cancel
(Probably you want to select 1 here)
Your decision? 1
Enter an optional description; end it with an empty line:
>
Reason for revocation: Key has been compromised
(No description given)
Is this okay? (y/N) y
Revocation certificate created.

=
1

A You must keep the certificate in a very secure place, since anybody who gets it can
invalidate your key and damage your reputation on the web of trust. The best practice is to
store it offline, along with the Primary Key, for example on an USB stick, put into a bank
safety deposit box.

OPERATING SECRET KEYS

Now that every user of the lab has some GPG keys, we can see how to operate on keys. The very
most of the following examples requires to be run as "foo" user, so we switch to the "foo" user right
now:

sudo su - foo

LISTING THE AVAILABLE KEYS

We can list the secret (private) keys as follows:

gpg --list-secret-keys

the output is:

/home/foo/.gnupg/pubring.kbx

sec nistp256/7B221C7A2ACA4DE9 2022-07-21 [SC]

Key fingerprint = 56AE 9AFF A54F Al111 BO8C FOC4 7B22 1C7A 2ACA 4DES
uid [ultimate] Foo User (Foo User Primary Key) <foo@carcano.local>

ssb nistp256/F43E205FRA259AC7 2022-07-21 [E] [expires: 2023-07-21]

ssb nistp256/4401D4D107578972 2022-07-21 [S] [expires: 2023-07-21]

ssb nistp256/F9C6C45EB9650672 2022-07-21 [SA] [expires: 2023-07-21]

The first column specifies the key type:

* sec: SECret key
* ssb: Secret SuBkey

so the output shows:

* a private key (the line that starts by "sec")
* some subkeys (the lines that start by "ssb")
* the uid of the secret key (the line that starts by "uid")

ADDING ADDITIONAL UID TO A PRIMARY KEY

You may want to add one or more additional uids to a Primary Key, but first you must enter the
interactive procedure to modify the Primary Key.

In this example we are modifying foo@carcano.local Primary Key:

gpg --pinentry-mode loopback --edit-key '<foof@carcano.local>’
just type adduid to enter the interactive wizard to add a new uid to the Primary key:

gpg> adduid

here is a snippet of the wizard:

Real name: Thud User

Email address: thud@carcano.local

Comment: Thud User Primary Key

You selected this USER-ID:

"Thud User (Thud User Primary Key)<thud@carcano.local>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

the output is as follows:

sec nistp256/7B221C7A2ACA4DE9S

created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate

ssb nistp256/F43E205FOA259AC7

created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972

created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6CA5EB9650672

created: 2022-07-21 expires: 2024-07-25 usage: SA
[ultimate] (1) Foo User (Foo User Primary Key) <foo@carcano.local>
[unknown] (2). Thud User (Thud User Primary Key)<thud@carcano.local>

don't bother for the "[unknown J' trust on the left of Thud's uid: it's just a matter of reloading.

Remember to save the changes before getting back to the shell:

gpg> save

by now Thud's key is shown as "trust ultimate" when you run the "gpg --list-secret-keys" statement.

SELEGTING A SPECIFIC UID

In order to run commands for a specific uid, you must first select it: just launch the interactive edit of
the key (in this example the Primary Key is foo@carcano.local):

gpg --pinentry-mode loopback --edit-key '<foof@carcano.local>’

the output is as follows:

Secret key is available.

sec nistp256/7B221C7A2ACA4DEYS
created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate
ssb nistp256/F43E205FOA259AC7
created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972
created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6C45EB9650672
created: 2022-07-21 expires: 2024-07-25 usage: SA
[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>
[ultimate] (2) Thud User (Thud User Primary Key)<thud@carcano.local>

now select (by index) the uid you are interested to run commands onto.

For example, to select Thud's uid:

gpg> uid 2

now the output is:

sec nistp256/7B221C7A2ACA4DE9S

created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate

ssb nistp256/F43E205FOA259AC7

created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972

created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6C45EB9650672

created: 2022-07-21 expires: 2024-07-25 usage: SA

[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>
[ultimate] (2)* Thud User (Thud User Primary Key)<thud@carcano.local>

note that now Thud's uid is marked with a "star" character - this means that the uid has been

selected, and that any following command will be related to this uid. Since we are only learning how
to select a uid, we do not run any other command.

Type exit to get back to the shell:

gpg> exit

DELETING A SPECIFIC UID

You may want to delete a specific uid from a Primary Key, but first you must enter the interactive
procedure to modify the Primary Key.

In this example we are modifying foo@carcano.local Primary Key:

gpg --pinentry-mode loopback --edit-key '<foo@carcano.local>’

the output is as follows:

Secret key is available.

sec nistp256/7B221C7A2ACA4DES
created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate
ssb nistp256/F43E205FOA259AC7
created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972
created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6C45EB9650672
created: 2022-07-21 expires: 2024-07-25 usage: SA
[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>
[ultimate] (2) Thud User (Thud User Primary Key)<thud@carcano.local>

now refer to "Selecting A Specific Uid" to select the uid you want to delete: in this example, pick the
key number 2 to delete Thud's uid.

type "deluid" to enter the interactive wizard to delete the subkey:

gpg> deluid

the wizard asks you to confirm:
Really remove this user ID? (y/N) y

remember to save the changes before getting back to the shell:

gpg> save

SELECTING SUBKEYS

In order to run commands for a specific subkey, you must first select it: just launch the interactive
edit of the key (in this example the Primary Key is foo@carcano.local):

gpg --pinentry-mode loopback --edit-key '<foo@carcano.local>’

the output is as follows:

Secret key is available.

sec nistp256/7B221C7A2ACA4DES
created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate
ssb nistp256/F43E205FOA259AC7
created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972
created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6CA5EB9650672
created: 2022-07-21 expires: 2023-07-21 usage: SA
[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

now select (by index) the subkey (ssb) you are interested to run commands onto.

For example, to select the last subkey:

gpg> key 3
now the output is:

sec nistp256/7B221C7A2ACA4DES
created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate
ssb nistp256/F43E205FOA259AC7
created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972
created: 2022-07-21 expires: 2023-07-21 usage: S
ssb* nistp256/F9C6C45EB9650672
created: 2022-07-21 expires: 2023-07-21 usage: SA
[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

note that now the last subkey is marked with a "star" character - this means that the subkey has
been selected, and that any following command will be related to this subkey. Since we are only
learning how to select a subkey, we do not run any other command.

Type exit to get back to the shell:

gpg> exit

EXTENDING THE EXPIRATION OF A SUBKEY

You may want to extend the expire time of a subkey of a Primary Key, but first you must enter the

interactive procedure to modify the Primary Key.

In this example we are modifying foo@carcano.local Primary Key:

gpg --pinentry-mode loopback --edit-key '<foof@carcano.local>’

the output is as follows:

Secret key is available.

SEE

ssb

ssb

ssb

nistp256/7B221C7A2ACA4DE9
created: 2022-07-21 expires:
trust: ultimate validity:
nistp256/F43E205FOA259AC7
created: 2022-07-21 expires:
nistp256/4401D4D107578972
created: 2022-07-21 expires:
nistp256/F9C6CA5EB9650672
created: 2022-07-21 expires:

[ultimate] (1). Foo User (Foo User

never usage: SC
ultimate

2023-07-21 wusage: E

2023-07-21 wusage: S

2023-07-21 wusage: SA
Primary Key) <foo@carcano.local>

now refer to "Selecting Subkeys" to select the subkey you want to extend the validity - in this
example, pick the key number 2 (nistp256/4401D4D107578972)

type "expire" to enter the interactive wizard to setup a new expiration for the subkey:

gpg> expire

this is a snippet of the interactive procedure:

Changing expiration time for a subkey.
Please specify how long the key should be valid.
0 = key does not expire

<n>
<n>w
<n>m
<n>y

key expires in n days
= key expires in n weeks
= key expires in n months
= key expires in n years

Key is valid for? (0) 2y
Key expires at Thu 25 Jul 2024 10:21:58 AM UTC
Is this correct? (y/N) y

remember to save the changes before getting back to the shell:

gpg> save

DELETING A SUBKEY

You may want to delete a specific subkey of a Primary Key, but first you must enter the interactive

procedure to modify the Primary Key.

In this example we are modifying foo@carcano.local Primary Key:
gpg --pinentry-mode loopback --edit-key '<foof@carcano.local>’

the output is as follows:

Secret key is available.

sec nistp256/7B221C7A2ACA4DES
created: 2022-07-21 expires: never usage: SC
trust: ultimate validity: ultimate
ssb nistp256/F43E205FOA259AC7
created: 2022-07-21 expires: 2023-07-21 usage: E
ssb nistp256/4401D4D107578972
created: 2022-07-21 expires: 2023-07-21 usage: S
ssb nistp256/F9C6CA5EB9650672
created: 2022-07-21 expires: 2023-07-21 usage: SA
[ultimate] (1). Foo User (Foo User Primary Key) <foo@carcano.local>

now refer to "Selecting Subkeys" to select the key you want to delete - in this example, pick the key
number 3 (nistp256/F9C6C45EB9650672)

type "delkey" to enter the interactive wizard to delete the subkey:

gpg> delkey

the wizard asks you to confirm:
Do you really want to delete this key? (y/N) y

remember to save the changes before getting back to the shell:

gpg> save

EXPORTING THE SECRET KEYS

You must of course take backups of your keys. Since in this lab we created most of the keys for the
"foo" user, if you are not working as this user, switch to it using sudo as follows:

sudo su - foo
since we switched to the "foo" user using sudo, we must always specify the --pinentry-mode loopback
command option.

GnuPG provides two different ways of exporting secret keys, as described below.

EXPORTING A SPECIFIC SECRET KEY ALONG WITH EVERY SUBKEY

This can be achieved by supplying the --export-secret-keys command switch as follows:

gpg --pinentry-mode loopback --export-secret-keys --armor 7B221C7A2ACA4DE9 > /mnt/fc
»

EXPORTING ONLY SUBKEYS OF A SPECIFIC KEY

Since subkeys are (only a little bit) less sensitive of the Primary Key, you may want to backup only the
private keys of the subkeys of a specific Primary Key, and securely store them into another USB stick
to put in a secure storage quicker to reach than the one where you put the USB stick with the
Primary Key.

This approach shortens the time to restore them from a backup when needed, since it is quite rare
that you need to restore the Primary Key - actually you'll need it only when signing other keys and a
very few other cases.

This time you must specify the --export-secret-subkeys command switch as by the example below:

gpg --pinentry-mode loopback --export-secret-subkeys --armor 7B221C7A2ACA4DE9 > foo(

»

SECURELY WORKING WITH THE PRIMARY KEY

The Primary Key is the most sensitive key, since it is the one that holds your uids and so that is tightly

bound to your own reputation. For this reason you must carefully handle it, and always be able to
access it.

The best practice is to:

* generate a revocation certificate right after creating the Primary Key
e export the key to a secure offline device, such as an USB stick (best would be an HSM) and
store it on a secure place such as a bank safety box

STORE THE PRIMARY KEY AND THE REVOCATION CERTIFICATE OFFLINE

Let's save the Primary Key and revocation certificate offline - for the sake of simplicity, in this tutorial
we see how to export it on an USB stick.

Mount the device you want to store the Primary Keys - in this example the USB stick is /dev/sde:
mount /dev/sde /mnt

switch to the user you want export the Primary Key - in this lab we are using the "foo" user:
sudo su - foo

let's now export the secret keys:

gpg --pinentry-mode loopback --export-secret-keys --armor 7B221C7A2ACA4DE9 > /mnt/fc

4

remember that after switching user with sudo it is mandatory to specify the --pinentry-mode

loopback command option

create the revocation certificate of the Primary Key if you didn't already, then copy it too to the USB
stick:

cp foo@carcano.local.revocation.asc /mnt

exit the sudoed shell:

exit

unmount the USB stick:

sudo umount /mnt

switch again to the "foo" user:

sudo su - foo

we are almost ready to shred the Primary Key: as every private key, it is stored beneath
~/.gnupg/private-keys-v1.d, but we need to know the filename first.

This can be easily achieved by listing the secret keys showing the key grip as follows:

gpg --with-keygrip --list-secret-keys 7B221C7A2ACA4DE9

output is:

sec nistp256/7B221C7A2ACA4DES 2022-07-21 [SC]

Key fingerprint = 56AE 9AFF A54F A111 BO8C FOC4 7B22 1C7A 2ACA 4DE9
Keygrip = 8FOE9847884EF3ABCFFD1EOCBEE2F831A1033357

uid [ultimate] Foo User (Foo User Primary Key) <foo@carcano.local>
ssb nistp256/F43E205FRA259AC7 2022-07-21 [E] [expires: 2023-07-21]
Keygrip = D496BB6AC61001B12FAC4813B4D61E7429E7BOF9

ssb nistp256/4401D4D107578972 2022-07-21 [S] [expires: 2023-07-21]
Keygrip = 83A6E2398552A36636A1F804F2CFODF165A7355C

ssb nistp256/F9C6C45EB9650672 2022-07-21 [SA] [expires: 2023-07-21]
Keygrip = ©A917D86F6744C226BE445AFDED54E681B800O96E

the key grip of the Primary Key is 8FOE9847884EF3ABCFFD1EOCBEE2F831A1033357.

Let's shred and remove the file containing the key from the disk:

shred -vz -n 7 .gnupg/private-keys-v1l.d/8FOE9847884EF3ABCFFD1EOCBEE2F831A1033357. key
rm -f .gnupg/private-keys-vl1l.d/8FOE9847884EF3ABCFFD1EOCBEE2F831A1033357.key

let's check the outcome:

gpg --list-secret-keys 7B221C7A2ACA4DE9
the output is:

sec# nistp256/7B221C7A2ACA4DES 2022-07-21 [SC]

Key fingerprint = 56AE 9AFF A54F A111 BO8C FOC4 7B22 1C7A 2ACA 4DE9
uid [ultimate| Foo User (Foo User Primary Key) <foo@carcano.local>
ssb nistp256/F43E205FOA259AC7 2022-07-21 [E| [expires: 2023-07-21
ssb nistp256/4401D4D107578972 2022-07-21 [S expires: 2023-07-21
ssb nistp256/F9C6CA5EB9650672 2022-07-21 [SA expires: 2023-07-21

note the pound sign (#) right after the sec word: this means that the secret key is missing, that is

exactly what we wanted to achieve.

IMPORTING THE PRIMARY KEY

Some tasks such as extending the subkeys, generate new ones, or signing other keys require the
secret key of the Primary Key to be available: this means that sometime we need to reload the
private key from the offline backup.

Mount the device containing the backup of the Primary Keys - in this example it is /dev/sde:
mount /dev/sde /mnt

switch to the user you want import the Primary Key - in this lab we use the "foo" user:
sudo su - foo

now just type:
gpg --pinentry-mode loopback --import /mnt/foo@carcano.local.priv.asc

the output is:

gpg: key 7B221C7A2ACA4DES: "Foo User (Foo User Primary Key) <foo@carcano.local>" not
gpg: key 7B221C7A2ACA4ADE9: secret key imported

gpg: Total number processed: 1

gpg: unchanged: 1

gpg: secret keys read: 1

gpg: secret keys imported: 1

gpg: secret keys unchanged: 1

exit the sudoed shell:

sudo su - foo

unmount the USB stick:

sudo umount /mnt

GENERATING A NEW PRIMARY KEY

It is certainly worth the effort to spend some words also on the steps to be followed if you generate a
new Primary Key to supersede the old one: in order to have this new key to become automatically
trusted by each one who have already set your old key as trusted, you must sign the new Primary Key
with the old Primary key indeed.

This can be done as follows:

gpg -u oldKeyID --sign-key newKeyID

for more information on this topic, read "The Web Of Trust" |later on.

If it isn't already, set the old key as trusted:

gpg -u newKeyID --edit-key oldKeyID trust

by doing so, every key you signed with the old key is evaluated as trusted.

Lastly, for your own convenience, modify the default key into ~/.gnupg/gpg.conf file, so to refer
commands to this new key by default:

default-key newKeyID

OPERATING PUBLIC KEYS
EXPORTING THE PUBLIC KEY(S)

Sometimes it is necessary to export a public key - for example to share a key without using a
keyserver.

In this example we are going to export fred's public key, so let's switch to "fred" user:
sudo su - fred

Now we export the public key of fred's specific Primary Key along with the ones of its subkeys:
gpg --export --armor fred@carcano.local > /tmp/fred-gpg.pub

IMPORTING THE PUBLIC KEY(S)

We can of course import one or more public keys from a file.

In this example we import into foo's public keyring the fred's public keys we previously exported:

sudo -u foo gpg --import /tmp/fred-gpg.pub

as you see we did it within a single statement running the command using sudo.

LISTING THE AVAILABLE KEYS

Switch to the user you want to list the keys - in this example we are switching to the "foo" user:

sudo su - foo

now list the available public keys:
gpg --list-keys

the output is as follows:

/home/foo/.gnupg/pubring.kbx

pub nistp256/7B221C7A2ACA4DE9 2022-07-21 |[SC

Key fingerprint = 56AE 9AFF AS54F A111 BO8C FOC4 7B22 1C7A 2ACA 4DE9S
uid [ultimate| Foo User (Foo User Primary Key) <foo@carcano.local>
sub nistp256/F43E205F0A259AC7 2022-07-21 [E expires: 2023-07-21
sub nistp256/4401D4D107578972 2022-07-21 [S expires: 2023-07-21
sub nistp256/F9C6CA5EB9650672 2022-07-21 [SA| [expires: 2023-07-21

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC
Key fingerprint = 0559 862A (951 CFB8 317C 8A7B AB3E 2E9F 213C C658
uid unknown| Fred User (Fred User Primary Key) <fred@carcano.local>

the first column specifies the key type:

* pub: PUBIic key
* sub: public SUBkey

SHOWING FINGERPRINTS AND KEY-ID

When running some statements - such as when sending keys to keyserver, it is necessary to supply
the fingerprint of the key. You can show fingerprints by adding the command switch as follows:

gpg --list-keys --with-fingerprint
the output is as follows:

/home/foo/.gnupg/pubring.kbx

pub nistp256/7B221C7A2ACA4DES 2022-07-21 [SC

Key fingerprint = 56AE 9AFF A54F Al111 BO8C FOC4 7B22 1C7A 2ACA 4DE9
uid ultimate| Foo User (Foo User Primary Key) <foo@carcano.local>
sub nistp256/F43E205FQA259AC7 2022-07-21 [E expires: 2023-07-21
Key fingerprint = 8420 DFC7 4529 DFOA E8A7 2123 F43E 205F ©A25 9AC7
sub nistp256/4401D4D1067578972 2022-07-21 [S expires: 2023-07-21
Key fingerprint = 6281 0639 A3C3 DB4F 5765 ES519 4401 DAD1 0757 8972
sub nistp256/F9C6C45EB9650672 2022-07-21 [SA| [expires: 2024-07-25
Key fingerprint = 2110 42B0@ 18A8 893B 58BC ©6EA F9C6 CA5E B965 0672

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC
Key fingerprint = 0559 862A (€951 CFB8 317C 8A7B AB3E 2E9F 213C (658
uid unknown| Fred User (Fred User Primary Key) <fred@carcano.local

4

the last 20 characters of the fingerprint are the key id.

DELETING A PUBLIC KEY

Switch to the user you want to delete the key - in this example we are switching to the "foo" user:

sudo su - foo

then list the available public keys as follows:

gpg --list-keys

the output is as follows:

/home/foo/.gnupg/pubring.kbx

pub nistp256/7B221C7A2ACA4DES 2022-07-21 [SC]

Key fingerprint = 56AE 9AFF A54F Al111 BO8C FOC4 7B22 1C7A 2ACA 4DE9S
uid [ultimate] Foo User (Foo User Primary Key) <foo@carcano.local>

sub nistp256/F43E205FQA259AC7 2022-07-21 [E] [expires: 2023-07-21]

sub nistp256/4401D4D107578972 2022-07-21 [S] [expires: 2023-07-21]

sub nistp256/F9C6C45EB9650672 2022-07-21 [SA] [expires: 2023-07-21]

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC]
Key fingerprint = 0559 862A (951 CFB8 317C 8A7B AB3E 2E9F 213C C658
uid [unknown] Fred User (Fred User Primary Key) <fred@carcano.local>

we can now delete the public key by using the --delete-key command switch.

For example, to delete fred's public key:

gpg --delete-key '<fred@carcano.local>’

this is a snippet of the wizard:

pub rsa2048/AB3E2E9F213CC658 2022-07-25 Fred User (Fred User Primary Key) <fred@carcano.
local>

Delete this key from the keyring? (y/N) y

DELIVERING THE PUBLIC KEY TO GPG KEYSERVERS

In real life you don't need to export public keys to files to exchange them to other parties: you just
have to send your public keys to keyservers. These are public available servers that store every GPG
public key the GPG community delivers to them. This means that GPG users can easily retrieve the
public key of other parties simply asking them to these servers.

A Mind there is a notice dated 2021-06-21 on sks-keyservers.net stating "Due to even more
GDPR takedown requests, the DNS records for the pool will no longer be provided at all".

It is really easy to send public keys to the key servers - just mind that you must supply the key-id, so
first you have to list the keys with the fingerprints so to guess the key id:

gpg --list-keys --with-fingerprint
the output is as follows:

/home/foo/.gnupg/pubring.kbx
pub nistp256/7B221C7A2ACA4DE9 2022-07-21 [SC
Key fingerprint = 56AE 9AFF A54F Al111 BO8C FOC4 7B22 1C7A 2ACA 4DE9
uid ultimate| Foo User (Foo User Primary Key) <foo@carcano.local>
sub nistp256/F43E205FQA259AC7 2022-07-21 [E expires: 2023-07-21
Key fingerprint = 8420 DFC7 4529 DFOA E8A7 2123 F43E 205F ©A25 9AC7
sub nistp256/4401D4D1067578972 2022-07-21 [S expires: 2023-07-21
Key fingerprint = 6281 0639 A3C3 DB4F 5765 ES519 4401 DAD1 0757 8972
sub nistp256/F9C6CA5EB9650672 2022-07-21 [SA| [expires: 2024-07-25
Key fingerprint = 2110 42B0 18A8 893B 58BC ©6EA F9C6 CA5E B965 0672

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC
Key fingerprint = 0559 862A (€951 CFB8 317C 8A7B AB3E 2E9F 213C (658
uid unknown| Fred User (Fred User Primary Key) <fred@carcano.local

4

the last 20 characters of the fingerprint are the key id.

Now you can run the actual statement to send the key to the server:

gpg --send-keys 7B221C7A2ACA4DE9
gpg: sending key 7B221C7A2ACA4ADES to hkps://keys.openpgp.org

A Don't do this while experimenting, but when you create your real keys you should publish

every public key and subkey (that belong to you). By the way, note that if necessary, you
can even run your own GPG keyserver and have a private keyserver dedicated to your
business.

you can of course override the default keyserver where to send the key by supplying the --keyserver
option followed by the FQDN of the keyserver you want to use - for example "--keyserver
pgp.mit.edu".

FETCHING PUBLIC KEYS FROM GPG KEYSERVERS

We can of course fetch the GPG public keys of other entities (either humans or devices) that have
been submitted to Key Servers. By the way, if you just need to look up keys, you may find it
convenient to use the web ui provided by https://keys.openpgp.org/.

A Mind there is a notice dated 2021-06-21 on sks-keyservers.net stating "Due to even more
GDPR takedown requests, the DNS records for the pool will no longer be provided at all".

For example, if "fred" user delivered its public keys to the Key Servers, we would be able to retrieve it
as follows:

gpg --recv-key 8A7BAB3E2E9F213CC658

you can of course override the default keyserver where to send the key by supplying the --keyserver
option followed by the FQDN of the keyserver you want to use - for example "--keyserver
pgp.mit.edu".

THE WEB OF TRUST

This is how OpenPGP trusts public keys: you <can find all the details at
http://www.gnupg.org/gph/en/manual.htmI|#AEN385, but by default the rule is that a key is
considered validated if it meets both of the following two conditions:

1. It is signed by enough valid keys, meaning one of the following:
1. You have signed it personally
2. It has been signed by one fully trusted key
3. It has been signed by three marginally trusted keys
2. The path of signed keys leading from it back to your own key is five steps or shorter

As for the trust levels:

Unknown this is the trust level of newly imported keys - it is the default.

Undefined this is a way to mark a key as “to be reviewed"” to assign the right level of
trust later on

Marginal this kind of trust is typically for people or entities you guess that behave
right, but you do not directly know. A key marginally trusted is automatically
shifted to trusted only if it signed by the key of at least three entities whom
keys have been trusted by you

https://keys.openpgp.org/
http://www.gnupg.org/gph/en/manual.html#AEN385

Full you are sure that the owner of these keys carefully signs the keys of other
entities. Be wary that this means that any other key that gets signed by his
key get automatically trusted

Ultimate this is the highest level - you blindly trust who uses this key - you can
consider this trust level suitable only for your own keys

Never it provides a way to never trust an entity, even if it has been (or will be)

trusted by other entities you trust. This actually blocks the web of trust on
this key

Since the first requisite of the web of trust are signed keys, to see this in action we need some public
keys to sign. In a real world scenario, we'd use key servers to receive and send public keys, but since
we are in a lab, we rely on exports to files.

Let's begin by exporting the public keys of every user.
sudo -u bar gpg --armor --export bar@carcano.local > /tmp/bar-gpg.pub
sudo -u baz gpg --armor --export baz@carcano.local > /tmp/baz-gpg.pub

sudo -u qux gpg --armor --export qux@carcano.local > /tmp/qux-gpg.pub
sudo -u fred gpg --armor --export fred@carcano.local > /tmp/fred-gpg.pub

and importing the keys of the users we want to trust: in order to avoid trivial examples, in this lab we
are going to trust the keys of bar, baz and qux users as "Marginally Trusted": this way, after having
each of them signing fred's key we'll see the web of trust in action, automatically guessing the trust
level of the fred's key as "Fully Trusted".

TRUSTING SOMEONE ELSE'S KEY

In our lab we are working as "foo" user, so let's switch to it:
sudo su - foo

we start by importing the keys of "bar", "baz" and "qux" users:

gpg --import /tmp/bar-gpg.pub
gpg --import /tmp/baz-gpg.pub
gpg --import /tmp/qux-gpg.pub

now let's trust as "marginal' bar's key:

gpg --pinentry-mode loopback --edit-key '<bar@carcano.local>' trust

the output of the interactive menu is as follows:

pub rsa2048/1A44B621829F5714
created: 2022-07-21 expires: never usage: SC
trust: unknown validity: full

sub rsa2048/60C80AQAD4A39C4A4

created: 2022-07-21 expired: 2022-07-22 usage: E
sub rsa2048/3CFODB6D5B7B5331
created: 2022-07-21 expires: 2023-07-21 usage: S
[full] (1). Bar User (Bar User Primary Key) <bar@carcano.local>

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

= I don't know or won't say
= I do NOT trust

= I trust marginally

I trust fully

= I trust ultimately

= back to the main menu

S b W N PR
1l

Your decision? 3
remember to save before exiting the GPG interactive menu:

gpg> save

let's repeat the step for baz's key (remember to save before exiting the GPG interactive menul):

gpg --pinentry-mode loopback --edit-key '<baz@carcano.local>' trust

and for qux's key (remember to save before exiting the GPG interactive menul!):

gpg --pinentry-mode loopback --edit-key '<qux@carcano.local>' trust

exit the sudoed shell to the previous user:

exit

SIGNING A KEY

In our mocked up scenario, fred's key will be signed by both "bar", "baz' and "qux" users.

A As | told you Certification capability is available only for Primary Key: although we are
signing a key, we are doing it for certification purposes - we are certifying that the
information stored in the key (Name, Surname and description) are actually true. By the
way this is the most crucial point of the trust PGP relies on: do not underestimate this step.
Never and ever sign keys of people you don't know, or that you cannot verify the identity

with reliable means. In addition to that, pay attention that anybody can submit whatever
he wants to keyservers: besides identifying the person holding the key, you should clearly

identify the key itself, for example by fingerprint.

Let's start from "bar": we must add fred's public key to bar's public keyring:

sudo -u bar gpg --import /tmp/fred-gpg.pub

of course, in a real world scenario bar user would retrieve fred's key from keyservers.

Now let's make bar user to sign fred's key (remember to save before exiting the GPG interactive
menul!):

sudo -u bar gpg --pinentry-mode loopback --edit-key '<fred@carcano.local>' sign

Mind that if the private key of the user (bar in this case) has been exported and removed from the
keyring, you'll get the following error:

gpg: signing failed: No secret key

in this case you have to re-import bar's private key into bar's private GPG keyring first.

Type "save" to save the key to the keyring and exit the GPG interactive command prompt:

gpg> save

As for now the generated signature is only in bar's keyring: bar must now export fred's public key, so
that other users can see his signature:

sudo -u bar gpg --armor --export fred@carcano.local > /tmp/fred-gpg.pub

of course in a real world bar user would send fred's public key to key servers.

Now it's baz's turn - let's import the updated fred's key:

sudo -u baz gpg --import /tmp/fred-gpg.pub

then baz signs fred's key (remember to save before exiting the GPG interactive menul):

sudo -u baz gpg --pinentry-mode loopback --edit-key '<fred@carcano.local>' sign

and eventually baz exports a new version of fred's key with the signature he added:

sudo -u baz gpg --armor --export fred@carcano.local > /tmp/fred-gpg.pub

Finally it has come qux's turn: import fred's public key into his public keyring:

sudo -u qux gpg --import /tmp/fred-gpg.pub

then qux signs fred's key (remember to save before exiting the GPG interactive menu!):

sudo -u qux gpg --pinentry-mode loopback --edit-key '<fred@carcano.local>' sign

and eventually he exports it:

sudo -u qux gpg --armor --export fred@carcano.local > /tmp/fred-gpg.pub

LISTING SIGNATURES ON A KEY

In our lab we work as "foo" user, so let's switch to it:
sudo su - foo

let's import (or of course retrieve from key server) the key we want to check the signatures:
gpg --import /tmp/fred-gpg.pub

now let's list the signatures:
gpg --list-sigs '<fred@carcano.local>'

the output is as follows:

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC]
Key fingerprint = 0559 862A C951 CFB8 317C 8A7B AB3E 2E9F 213C C658

uid [full 1] Fred User (Fred User Primary Key) <fred@carcano.local>

sig 3 AB3E2E9F213CC658 2022-07-25 Fred User (Fred User Primary Key) <fred@carcan
o.local>

sig 1A44B621829F5714 2022-07-25 Bar User (Bar User Primary Key) <bar@carcano.lo
cal>

sig 7404BF5387181611 2022-07-25 Baz User (Baz User Primary Key) <baz@carcano.lo
cal>

sig 1317D81E1CE2B6B3 2022-07-25 Qux User (Qux User Primary Key) <qux@carcano.lo
cal>

AUTOMATIC ASSIGNMENT OF TRUST LEVEL

As previously told, GPG is able to automatically guess trust level for public keys.

Let's have a look to the available public keys:
gpg --list-keys

the output is as follows:

/home/foo/.gnupg/pubring.kbx
pub nistp256/7B221C7A2ACA4DES 2022-07-21 [SC]
Key fingerprint = 56AE 9AFF A54F A111 B@8C FOC4 7B22 1C7A 2ACA 4DE9
uid [ultimate] Foo User (Foo User Primary Key) <foo@carcano.local>
sub nistp256/F43E205FRA259AC7 2022-07-21 [E] [expires: 2023-07-21]
sub nistp256/4401D4D107578972 2022-07-21 [S] [expires: 2023-07-21]

sub nistp256/F9C6C45EB9650672 2022-07-21 [SA] [expires: 2023-07-21]

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC]
Key fingerprint = 0559 862A C951 CFB8 317C 8A7B AB3E 2E9F 213C (658
uid [unknown] Fred User (Fred User Primary Key) <fred@carcano.local>

pub rsa2048/1A44B621829F5714 2022-07-21 [SC]

Key fingerprint = 1414 EDCC 5BBB (€879 5662 4F38 1A44 B621 829F 5714
uid [unknown] Bar User (Bar User Primary Key) <bar@carcano.local>
sub rsa2048/3CFODB6D5B7B5331 2022-07-21 [S] [expires: 2023-07-21]

pub rsa2048/7404BF5387181611 2022-07-21 [SC]

Key fingerprint = 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611
uid [unknown] Baz User (Baz User Primary Key) <baz@carcano.local>
sub rsa2048/DE8B6BB533181C7E 2022-07-25 [S] [expires: 2023-07-25]

pub rsa2048/1317D81E1CE2B6B3 2022-07-25 [SC]
Key fingerprint = 4086 6F42 0748 D33D 438D 3600 1317 D81E 1CE2 B6B3
uid [unknown] Qux User (Qux User Primary Key) <qux@carcano.local>

as you see, despite we previously set "Marginal" trust level to "bar", "baz" and "qux" user's keys, they
are all listed with "unknown trust".

Let's check the contents of the trustdb:

gpg --export-ownertrust

the output is:

856AESOAFFA54FA111BO8CFOC47B221C7A2ACA4DES:6:
1414EDCC5BBBC87956624F381A44B621829F5714:4:
42C1515BD21D96B06479D9147404BF5387181611:4:
40866F420748D33D438D36001317D81E1CE2B6B3:4:t

The meaning of the number in the second column is as follows:

2 | don't know or won't say
3 | do NOT trust

4 | trust marginally

5 | trust fully

6 | trust ultimately

so the "4" in the second column means "Marginal Trust", which is exactly what we expected.

The problem is that we are still missing another requirement for the web of trust, ... besides being
trusted, bar, baz and qux keys must also be signed by the user, or they will not be considered "safe".

So let's sign bar's key:

gpg --pinentry-mode loopback --edit-key '<bar@carcano.local>' sign

then baz's key:

gpg --pinentry-mode loopback --edit-key '<baz@carcano.local>' sign

and finally qux's key:

gpg --pinentry-mode loopback --edit-key '<qux@carcano.local>' sign
let's check the trust level of the keys now:
gpg --list-keys

the output is as follows:

/home/foo/.gnupg/pubring.kbx

pub nistp256/7B221C7A2ACA4ADE9 2022-07-21 [SC]
Key fingerprint = 56AE 9AFF A54F Al111 BO8C FOC4 7B22 1C7A 2ACA 4DES
uid [ultimate] Foo User (Foo User Primary Key) <foo@carcano.local>
sub nistp256/F43E205FOA259AC7 2022-07-21 [E] [expires: 2023-07-21]
sub nistp256/4401D4D107578972 2022-07-21 [S] [expires: 2023-07-21]
sub nistp256/F9C6C45EB9650672 2022-07-21 [SA] [expires: 2023-07-21]

pub rsa2048/AB3E2E9F213CC658 2022-07-25 [SC]
Key fingerprint = 0559 862A C951 CFB8 317C 8A7B AB3E 2E9F 213C (658
uid [full] Fred User (Fred User Primary Key) <fred@carcano.local>

pub rsa2048/7404BF5387181611 2022-07-21 [SC]

Key fingerprint = 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611
uid [full] Baz User (Baz User Primary Key) <baz@carcano.local>
sub rsa2048/DE8B6BB533181C7E 2022-07-25 [S] [expires: 2023-07-25]

pub rsa2048/1317D81E1CE2B6B3 2022-07-25 [SC]
Key fingerprint = 4086 6F42 0748 D33D 438D 3600 1317 D81E 1CE2 B6B3
uid [full 1] Qux User (Qux User Primary Key) <qux@carcano.local>

pub rsa2048/1A44B621829F5714 2022-07-21 [SC]

Key fingerprint = 1414 EDCC 5BBB C879 5662 4F38 1A44 B621 829F 5714
uid [full 1] Bar User (Bar User Primary Key) <bar@carcano.local>
sub rsa2048/3CFODB6D5B7B5331 2022-07-21 [S] [expires: 2023-07-21]

so signing the key

* dynamically raised the "guessed" trust level from "Marginal" to full for bar, baz an qux
* automatically guessed the "Full" trust level for fred's key, since it is signed by three or more
marginally trusted users

OPERATING WITH GPG

Now that we have a lab with all the necessary users and keys to play with, we can begin doing

something.

SIGNING DOCUMENTS

The most straightforward GPG application is signing - there are actually three ways to sign a
document using GPG:

* GPGsigning
* GPG cleartext signing
® GPG Detached signing

The first two methods, since they embed the signature, actually generate a file with both the
contents of the document and its signature. The last one instead leaves the document unchanged
and generates a signature file: for this reason the last method is suitable for the purpose of signing
not only documents, but also software packages too.

GPG SIGNING

This is the first method - in this example we are working as the "baz" user:
sudo su - baz
we just have to provide the --sign command switch as follows:

gpg --pinentry-mode loopback --out /tmp/README.gpg --sign /usr/share/doc/gnupg2/REAL

»

let's inspect the kind of contents of the generated file (README.gpg)

file ~/README.gpg

as expected, the outcome is a data document that embeds the GPG signature.

README.gpg: data

exit the sudoed shell and become the "foo" user:

exit
sudo su - foo

we can now verify the signature of the signed document:

gpg --verify /tmp/README.gpg

the outcome is as follows:

gpg: Signature made Wed 27 Jul 2022 01:01:27 PM UTC
gpg: using RSA key 76006E9AEFC950E44EC1D539DE8B6BB533181C7E

gpg: checking the trustdb

gpg: marginals needed: 3 completes needed: 1 trust model: pgp

gpg: depth: @ valid: 1 signed: 2 trust: ©-, @q, @n, om, of, 1u

gpg: depth: 1 valid: 2 signed: 1 trust: ©-, @q, ©n, 2m, Of, Ou

gpg: Good signature from "Baz User (Baz User Primary Key) <baz@carcano.local>"
Primary key fingerprint: 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611
Subkey fingerprint: 7600 6E9A EFC9 50E4 4EC1 D539 DE8B 6BB5 3318 1C7E

full

4

we can then decipher the GPG signed document and extract the original one by providing both the --

decrypt and --output command line options:

gpg --output ~/README --decrypt /tmp/README.gpg

the output is as follows:

gpg: Signature made Wed 27 Jul 2022 01:01:27 PM UTC

gpg: using RSA key 76006ESAEFC950E44EC1D539DE8B6BB533181C7E

gpg: Good signature from "Baz User (Baz User Primary Key) <baz@carcano.local>
Primary key fingerprint: 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611
Subkey fingerprint: 7600 6E9A EFC9 50E4 4EC1 D539 DE8B 6BB5 3318 1C7E

as you see, before extracting the original document gpg anyway checks the signature.

Exit the sudoed shell.
exit

CLEARTEXT SIGING

This is the second method - in this example we are working as the "baz" user:

sudo su - baz

this time we just provide the --clearsign command switch as follows:

full

gpg --pinentry-mode loopback --out /tmp/README.asc --clearsign /usr/share/doc/gnupgz

let's see the contents of the "/tmp/README.asc" file:

head -n 8 /tmp/README.asc;echo "...";tail -n 7 /tmp/README.asc

the output is just a snippet of the first 8 lines and last 7 lines of the file:

Hash: SHA512

4

The GNU Privacy Guard 2

Version 2.2

Copyright 1997-2019 Werner Koch

iHUEARMKABOWIQQhEEKwWGKiJ01i8Bur5xsReuWUGcgUCYt+aQwAKCRD5xsReulWUG
cpiwAQCkNi13YdgD4mkeenpmX8fz55HR54jzRXQrwZb54ZIVAgEAsmgrwLp+Xbth
k10CNyBJ4macXEXevfjcb6uSaNeYcTSU=

=QzPo

as you see the file contains

e 3 cleartext header ("-----BEGIN PGP SIGNED MESSAGE----- ..") that claims that the document is
PGP signed
e 3 cleartext footer, ("----- BEGIN PGP SIGNATURE-----","----- END PGP SIGNATURE-----") with the

actual signature

so, as suggested by the name of the command line switch we provided, this time we generated a
document with a cleartext signature.

Exit the sudoed shell and become the "foo" user:

exit
sudo su - foo

same way as we already did, let's verify the signed document:

gpg --verify /tmp/README.asc

the outcome is as follows:

gpg: Signature made Wed 27 Jul 2022 ©1:23:11 PM UTC

gpg: using RSA key 76006ESAEFC950E44EC1D539DE8B6BB533181C7E

gpg: Good signature from "Baz User (Baz User Primary Key) <baz@carcano.local>" [full
Primary key fingerprint: 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611

Subkey fingerprint: 7600 6ESA EFC9 50E4 4EC1 D539 DE8B 6BB5 3318 1C7E

4

we can then decipher the GPG signed document and extract the original one by providing both the --
decrypt and --output command line:

gpg --output ~/README --decrypt /tmp/README.asc

the output is as follows:

gpg: Signature made Wed 27 Jul 2022 01:23:11 PM UTC

gpg: using RSA key 76006ESAEFC950E44EC1D539DE8B6BB533181C7E

gpg: Good signature from "Baz User (Baz User Primary Key) <baz@carcano.local>" [full
Primary key fingerprint: 42C1 515B D21D 96B@ 6479 D914 7404 BF53 8718 1611

Subkey fingerprint: 7600 6E9A EFC9 50E4 4EC1 D539 DE8B 6BB5 3318 1C7E

as you see, before extracting the original document gpg anyway checks the signature.
Exit the sudoed shell.
exit

DETACHED SIGNATURE

This is the third and last method: since it is broadly used to sign software, | describe it in the next

paragraph "Signing Software".

SIGNING SOFTWARE

GPG is broadly used to generate signature files of software packages.

In this example we are working as the "baz" user:

sudo su - baz

VERIFYING A DETACHED SIGNATURE

To provide a real life example, we download Gitea - a GIT implementation with a very nice WebUI -
along with the file containing the GPG signature of the software package.

curl -o ~/gitea-1.16.9-darwin-10.12-amd64 https://dl.gitea.io/gitea/1.16.9/gitea-1.1
curl -o ~/gitea-1.16.9-darwin-10.12-amd64.asc https://dl.gitea.io/gitea/1.16.9/gitec

4

The very first thing to do is gather some information on the key that has been used to generate the
signature file:

gpg --list-packets < ~/gitea-1.16.9-darwin-10.12-amd64.asc

the output is as follows:

off=0 ctb=89 tag=2 hlen=3 plen=563

:signature packet: algo 1, keyid 5FC346329753F4B0

version 4, created 1657658277, md5len @, sigclass 0x00

digest algo 8, begin of digest 81 ad

hashed subpkt 33 len 21 (issuer fpr v4 CC64B1DB67ABBEECAB24B6455FC346329753F4B0)
hashed subpkt 2 len 4 (sig created 2022-07-12)

subpkt 16 len 8 (issuer key ID 5FC346329753F4B0)
data: [4096 bits]

now that we know the fingerprint of the key (CC64B1DB67ABBEECAB24B6455FC346329753F4B0), we
retrieve the public key used to generate the signature from the keyservers:

gpg --keyserver keys.openpgp.org --recv CC64B1DB67ABBEECAB24B6455FC346329753F4B0

since we don't have other keys that let us guess a trust for this key (see "The Web Of Trust" for more
information on this topic), we must trust it manually.

This actually involves to trust the key - (set it as fully trusted):

gpg --pinentry-mode loopback --edit-key '<teabot@gitea.io>' trust
and to sign the key:

gpg --pinentry-mode loopback --edit-key '<teabot@gitea.io>' sign
we are finally ready to check if the downloaded file matches its signature:

gpg --verify ~/gitea-1.16.9-darwin-10.12-amd64.asc ~/gitea-1.16.9-darwin-10.12-amd64

4

the output is as follows:

gpg: Signature made Tue 12 Jul 2022 ©8:37:57 PM UTC

gpg: using RSA key CC64B1DB67ABBEECAB24B6455FC346329753F4B0

gpg: Good signature from "Teabot <teabot@gitea.io>" [full]

Primary key fingerprint: 7C9E 6815 2594 6888 62D6 2AF6 2D9A E806 EC15 92E2
Subkey fingerprint: CC64 B1DB 67AB BEEC AB24 B645 5FC3 4632 9753 F4BO

A You may think that we took enough care into the verification of the software, ... but we
haven't. Beware that since anybody can submit whatever he wants to keyservers, you risk
downloading a rogue key. When keyservers are used, a thorough verification must involve
also gathering the fingerprint of the key from a secure source and checking the fingerprint
of the downloaded key. You have been warned!

For the sake of completeness, in the event of a mismatched signature, the output would have been:

gpg: Signature made Tue 12 Jul 2022 ©8:37:57 PM UTC
gpg: using RSA key CC64B1DB67ABBEECAB24B6455FC346329753F4B0O
gpg: BAD signature from "Teabot <teabot@gitea.io>" [full]

GENERATING A DETACHED SIGNATURE

In this example we are still working as the "baz" user. If you are not that user, switch to it:

sudo su - baz

Let's copy the "echo" command and pretend that we built a new amazing fancy software:
cp /usr/bin/echo /tmp/myfancysoftware

now we want to GPG sign our fancy software binary:

gpg --pinentry-mode loopback --armor --output /tmp/myfancysoftware.asc --detach-sig
»

let's see the contents of the signature file:

cat /tmp/myfancysoftware.asc

the output is as follows:

1QEzBAABCAAdFiEEdgBumu/JUOROwdU530trtTMYHH4AFAMLhQngACgkQ3otrtTMY
HH7Lbwf9HIDRSXUPjxDUEIk9x1bJGtipyNoq30Bnv/Rg5C5LQfKjfsud1SL5BTFK
BmSNJI5sLsmJOSZ6NwupCvMnLMz1Xr6v1Qvdm7bwW8Nt+xdKOPxpfgrDO4xtfVabSs
4dLfhd9inflZg2mtetcBbpIK+pOtK3H91XI2FtB8cGgMu5DVPXY7KDUrSCdAS5b3A
iK62+wmgeGok+bXsoY2W06bpO5LUASWE6WY8/pggHK1tfrXrDiXu9YOdSHOzZmM6Rp
sipKhsUR3Z51JQ9GVzNIEY6wA9Ivi/1HdYbgyjovliIf6AVdnqQHIOYN71xY8tNr
/128QC82649pgxI755wyl/rkmKXwFg==

=F9k8

now let's pretend that the "foo" user want to install myfancysoftware: just exit the sudoed shell and
become the "foo" user:

exit
sudo su - foo

since foo user is cautious, he checks the signature first:

gpg --verify /tmp/myfancysoftware.asc /tmp/myfancysoftware

the output is as follows:

gpg: Signature made Wed 27 Jul 2022 01:49:44 PM UTC

gpg: using RSA key 76006E9AEFC950E44EC1D539DES8B6BB533181C7E

gpg: Good signature from "Baz User (Baz User Primary Key) <baz@carcano.local>" [full]
Primary key fingerprint: 42C1 515B D21D 96BO 6479 D914 7404 BF53 8718 1611

Subkey fingerprint: 7600 6E9A EFC9 50E4 4EC1 D539 DE8B 6BB5 3318 1C7E

So the signature is good.

Exit the sudoed shell:
exit

GPG SIGNED RPM PACKAGES

RPM is a sophisticated archive format that does not only pack a set of files and directories within a
package file, but can also run scripts and evaluate conditionals. It is made by putting a header
structure on top of a CPIO archive. The package itself has four sections: the second one contains the
GPG signature to verify the integrity of the package.

We can query rpm to get information about the signature of the already installed RPM package:
rpm -q -vv --queryformat '%{siggpg:armor}' basesystem

the output is as follows:

ufdio: 1 reads, 17154 total bytes in 0.000005 secs
loading keyring from pubkeys in /var/lib/rpm/pubkeys/*.key
couldn't find any keys in /var/lib/rpm/pubkeys/*.key
loading keyring from rpmdb

serialize failed, using private dbenv

opening db environment /var/lib/rpm cdb:private:0x401
opening db index /var/lib/rpm/Packages ©x400 mode=0x0
locked db index /var/lib/rpm/Packages

opening db index /var/lib/rpm/Name ©x400 mode=0x0

: read h# 395

Header SHA1 digest: OK

D: added key gpg-pubkey-6d745a60-60287f36 to keyring

D: read h# 397

Header SHA1l digest: OK

D: added key gpg-pubkey-2f86d6al-5cf7cefb to keyring

D: read h# 514

Header SHA1l digest: OK

D: added key gpg-pubkey-442df0f8-608c8351 to keyring

D: Using legacy gpg-pubkey(s) from rpmdb

D: read h# 16

Header V4 RSA/SHA256 Signature, key ID 6d745a60: OK
Header SHA256 digest: OK

Header SHA1 digest: OK

(none)D: closed db index /var/lib/rpm/Packages

D: closed db index /var/lib/rpm/Name

D: closed db environment /var/lib/rpm

D: Exit status: @

O O O O O OO O O O

RPM verifies the signature of the packages using its own GPG keyring.
You can add GPG keys to RPM keyrings by saving the key file into the /etc/pki/rpm-gpg directory.

For example, we can download the GPG file used to sign PostgreSQL14 RPM packages as follows:

curl -o /etc/pki/rpm-gpg/RPM-GPG-KEY-PGDG https://download.postgresql.org/pub/repos/
>

once saved, the file must also be imported as follows:

sudo rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-PGDG

we can list the GPG keys available in the RPM keyring as follows:

rpm -q --queryformat "%{SUMMARY}\n" gpg-pubkey

if everything worked properly, the new key must be among the list:

gpg(Release Engineering <infrastructure@rockylinux.org>)
gpg(Fedora EPEL (8) <epel@fedoraproject.org>)
gpg(PostgreSQL RPM Building Project <pgsql-pkg-yum@postgresql.org>)

Having the key imported in the RPM gpg keyring lets us enable GPG check before installing the
downloaded package.

This can be achieved by adding the gpgcheck and gpgkey directives within each repository stanza in
the specific ".repo" files into /etc/yum.repos.d directory.

This is an example snippet of how to set these directives:

gpgcheck=1
gpgkey=Ffile:///etc/pki/rpm-gpg/RPM-GPG-KEY-PGDG

You can of course GPG sign your own RPM packages.

The signing feature for the rpm command line utility is provided by the rpm-sign RPM package - let's
install it as follows:

sudo dnf install -y rpm-sign

in the following example we are working as "foo" user, so become the "foo" user:

sudo su - foo

configure the RPM macros of the user.

Please note that since we can have several keys within our GPG keyring, we must specify which GPG
key must be used to sign RPMs: in this example we are configuring it to use "foo@carcano.local' GPG
key:

cat << \EOF >> ~/.rpmmacros
%_gpg_name <foo@carcano.local>
EOF

although this is optional, we can even specify the GPG command we use to sign along with its
options - here | can specify the "--pinentry-mode loopback" since I'm using Red Hat 8 / CentOS 8:

cat << \EOF >> ~/.rpmmacros
%__gpg_sign_cmd %{__gpg} gpg --force-v3-sigs --no-armor --pinentry-mode loopback --r
EOF

Now everything is properly set up to sign RPM packages.

Just to provide an example, the rpm command to sign the foo-0.1-1.el8.x86_64.rpm RPM packages is:
rpm --addsign ~/rpmbuild/RPMS/x86_ 64/f00-0.1-1.e18.x86_64.rpm

after typing the password to unlock the secret key for the signature, the RPM packages get signed.

ENCRYPTING AND DECRYPTING

The other straightforward purpose of GPG is file encryption. When encrypting, OpenPGP:

* first compresses the data (if file size is enough to allow compression)
* then applies a symmetric algorithm with a random session key generated on the fly to encrypt
the compressed data

The session key itself is then encrypted by asymmetric algorithms using the public key of each one of
the specified recipients.

As an example, let's make a copy the /usr/share/doc/gnupg2/README file:
cp /usr/share/doc/gnupg2/README ~/README
then let's encrypt the copy:

gpg -e --armor -r bar@carcano.local -r foo@carcano.local --out /tmp/README.asc ~/REZ

4

A Remember to always include your own public key among the various public keys used in
the encryption statement or you won't be able to decrypt the file if you shred the original
one.

Since gpg does not remove the original file, it's up to you to properly shred it, for example:

shred -vz -n 7 ~/README
rm -f ~/README

let's become the "bar" user:

exit

sudo su - bar

since bar was among the recipients, we must be able to decrypt the file:

gpg --pinentry-mode loopback --out ~/README -d /tmp/README.asc

the output is as follows:

gpg: encrypted with ECDH key, ID F43E205FQA259AC7
gpg: encrypted with 2048-bit RSA key, ID 65010FDACE7E3E49, created 2022-07-26
"Bar User (Bar User Primary Key) <bar@carcano.local>"

A Beware the keylD of each recipient is stored within the encrypted file. As you see the keylD
is shown in the decryption process indeed. You must be very careful about this disclosed
sensitive information: if you are using GPG in high risk situations (there are activists that
risk their own life), mind that the evil ones can know who can decrypt it, and use “hard”
methods to force him to decrypt it.

Exit the sudoed shell:
exit

EXPLOITING THE VIM GPG PLUGIN

Since we previously installed it, we can now exploit the vim GPG plugin.

Become the "foo" user:

sudo su - foo

Let's begin from editing the /tmp/README.asc GPG encrypted file we created a while ago:

vim /tmp/README.asc

As you can see the plugin seamlessly decrypts the file. You can modify it at wish: when you save it the
plugin seamlessly re-encrypts it.

Now let pretend foo is a system administrator that works in the same team with bar: we can set to
encrypt for both of them by default simply by adding both of the to the GPGDefaultRecipients list in
the ~/.vimrc file:

" Set the default recipient list
let g:GPGDefaultRecipients=["foo@carcano.local", "bar@carcano.local"]

To try it, let's create a new file - please note that in order to have vim correctly guess we want to
create a GPG encrypted file, the new file must be an ".asc" file.

So:

vim newfile.asc

both foo and bar user are now listed in the recipients list as shown in the following snippet:

GPG: Please edit the list of recipients, one recipient per line.

GPG: Unknown recipients have a prepended "!".

GPG: Lines beginning with "GPG:" are removed automatically.

GPG: Data after recipients between and including "(" and ")" is ignored.

GPG: Closing this buffer commits changes.

G R G e LR

Foo User (Foo User Primary Key) <foo@carcano.local> (ID: ©x7B221C7A2ACA4DES created at We
d 27 Jul 2022 ©07:19:11 AM UTC

Bar User (Bar User Primary Key) <bar@carcano.local> (ID: ©x1A44B621829F5714 created at Th
u 21 Jul 2022 09:17:15 AM UTC

~

~

GPGRecipients_1

If you wish you can of course add other recipients to this list - you must of course already have
imported their public key in the GPG public keyring before.

When done, simply type :q to exit from the GPG settings of this file and switch to the vim edit mode,
then just work as you are usually doing with vim.

If you want to see the list of recipient, just switch to command mode and type:
:GPGViewRecipients

If necessary, you can of course modify the list of recipients by switching to command mode by typing:
:GPGEditRecipients

exit the sudoed shell:
exit

HIDDEN RECIPIENTS

As we saw the encrypted file can contain sensitive information about the key or keys necessary to

decrypt the file.

For example, let's become "qux" user:

sudo su - qux

and try to decrypt the file:

gpg --pinentry-mode loopback --out ~/README -d /tmp/README.asc

the outcome is the following message:

gpg: encrypted with ECDH key, ID F43E205FQA259AC7
gpg: encrypted with RSA key, ID 65010FD4CE7E3E49
gpg: decryption failed: No secret key

So, although gux user is not able to decrypt the file, he knows the ID of the keys that are necessary to
decrypt it. This can pose serious security risks to the individuals that own those keys, if qux is evil.

For this reason, when dealing with very risky situations, it's better to specify the recipients as hidden:

Let's switch back to the "foo" user:

exit

sudo su - foo

and encrypt the file again, but this time using the -R (capital letter) option to list the recipients as
hidden:

gpg -e --armor -R bar@carcano.local -R foo@carcano.local --out /tmp/README.asc /usr/

4

now let's switch to the "qux" user again:

exit

sudo su - qux

and try to decrypt the file again:

gpg -d /tmp/README.asc

this time the output is:

gpg: selecting card failed: No such device

gpg: selecting card failed: No such device

gpg: encrypted with ECDH key, ID 0©000000000000000
gpg: encrypted with RSA key, ID 0000000000000000
gpg: decryption failed: No secret key

So now we are not leaking any kind of information.

Just exit the sudoed shell:

exit

SIGNING AND ENCRYPTING A DOCUMENT

If you wish, you can of course both encrypt and sign a document.

Switch to the "foo" user:

sudo su - foo

in order to both encrypt and sign, you must provide both the -e and --sign command line switches.

For example, to encrypt and sign the /usr/share/doc/gnupg2/README so that both foo and bar users
can use it, type:

gpg --pinentry-mode loopback -e --armor -R bar@carcano.local -R foo@carcano.local --

4

FOOTNOTES

Here it ends this tutorial on GPG. We thoroughly saw how to generate and manage Primary Keys and
subkeys, what are the best practices and how to use them to sign and encrypt documents. We also
learned how GPG can automatically figure out the trust level to assign to public keys using the Web
Of Trust.

